EPR Parameters of the Trigonal Fe_{Ga}^+ - S_P Pair Defect in n-Type GaP Codoped with Iron and Sulphur

Xiao-Xuan Wu a,b,c , Wen-Chen Zheng b,c,d , Qing Zhou b , and Yang Mei b

^a Department of Physics, Civil Aviation Flying Institute of China, Guanghan 618307, People's Republic of China

b Department of Material Science, Sichuan University, Chengdu 610064, People's Republic of China

^c International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, People's Republic of China

d Surface Physics Laboratory (National Key Lab), Fudan University, Shanghai 200433, People's Republic of China

Reprint requests to W.-C. Z.; Fax: +86-28-85416050; E-mail: zhengwc1@163.com

Z. Naturforsch. 60a, 753 – 755 (2005); received April 6, 2005

The EPR parameters (g factors g_{\parallel} , g_{\perp} , and zero-field splitting D) of a trigonal Fe⁺ center (which is assigned to a donor-acceptor pair defect Fe⁺_{Ga}-S_P caused by S²⁻ at a nearest-neighbor P³⁻ site of an Fe⁺_{Ga} impurity) in n-type GaP codoped with iron and sulphur are calculated from high-order perturbation formulas based on the two spin-orbit coupling parameter model for the EPR parameters of a 3d⁷ ion in trigonal symmetry. The calculated results agree well with the observed values, suggesting that the assignment is suitable.

Key words: Electron Paramagnetic Resonance; Pair Defect; Crystal- and Ligand-field Theory; Fe⁺; GaP.

1. Introduction

Iron-related defects in II-VI and III-V semiconductors have received considerable interest because these defects can influence the properties of these semiconductors [1-4]. Many optical and EPR spectra have been used to assign these defect centers. Among them, a trigonal Fe⁺ center in n-type GaP codoped with iron and sulphur was found by EPR measurement, and its EPR g factors $g_{\parallel} \approx 2.133(5)$, $g_{\perp} \approx 2.140(5)$ and zerofield splitting $D \approx -0.1705(3) \, \mathrm{cm}^{-1}$ were reported [3]. The Fe⁺ center is assigned to a donor-acceptor Fe⁺_{Ga} S_P pair defect caused by S²⁻ at a nearest-neighbor P^{3-} site of an Fe_{Ga}^+ impurity [3]. In order to explain these EPR parameters and to confirm the assignment of the trigonal Fe_{Ga}⁺-S_P center, a theoretical calculation of these EPR parameters based on the above defect model is necessary. Since the III-V semiconductors are strongly covalent, and the spin-orbit (SO) coupling parameter ζ_P^0 ($\approx 250~{\rm cm}^{-1}$ [5]) of ligand P^{3-} is close to that ($\zeta_d^0 \approx 356~{\rm cm}^{-1}$ [6]) of the central $3d^7$ ion Fe⁺, the contribution to EPR parameters due to the admixture of ζ_d^0 and ζ_P^0 via covalence effects should be considered. Thus, a two-SO-parameter model including the contributions from both the SO coupling parameter of the central 3dⁿ ion and that of the ligand ion should be applied here [7, 8]. In this paper we calculate the EPR parameters of the Fe⁺_{Ga}-S_P pair defect from high-order perturbation formulas based on the two-SO-parameter model for the EPR parameters of a 3d⁷ ion in a trigonal tetrahedral site [8]. The results are discussed.

2. Calculation

In the two-SO-parameter model [7,8], the oneelectron basis functions are the linear combination of atomic orbitals (LCAO). For a $3d^n$ tetrahedral cluster, we have [8]

$$\begin{split} \Psi_{t} &= N_{t}(|\mathbf{d}_{t}\rangle + \lambda_{\sigma}|\sigma_{t}\rangle + \lambda_{\pi}|\pi_{t}\rangle), \\ \Psi_{e} &= N_{e}(|\mathbf{d}_{e}\rangle + \sqrt{3}\lambda_{\pi}|\pi_{e}\rangle), \end{split} \tag{1}$$

where $|d_{\gamma}\rangle$ ($\gamma=t$ or e denotes the irreducible representation of a T_d group) is the d orbital of a $3d^n$ ion. $|\pi_{\gamma}\rangle$ and $|\sigma_t\rangle$ are the p orbitals of ligands. N_{γ} is the normalization coefficient and λ_{σ} and λ_{π} are the orbital mixing coefficients. These LCAO coefficients can be

related by the normalization relation

$$\begin{split} N_{t} &= [1 + (\lambda_{\sigma})^{2} + (\lambda_{\pi})^{2} + 2\lambda_{\sigma}S_{dp}(\sigma) \\ &+ 2\lambda_{\pi}S_{dp}(\pi)]^{-1/2}, \end{split} \tag{2} \\ N_{e} &= [1 + 3(\lambda_{\sigma})^{2} + 6\lambda_{\pi}S_{dp}(\pi)]^{-1/2}, \end{split}$$

in which $S_{\rm dp}(\sigma)$ and $S_{\rm dp}(\pi)$ are the group overlap integrals.

From the basis functions and by using Macfarlane's perturbation-loop method [9,10], the high-order perturbation formulas of the EPR parameters for a $3d^{7}$ ion in trigonal MX₄ clusters were derived, i.e. [8],

$$\begin{split} D &= 2\zeta^{r2}(1/E_1^2 - 1/E_2^2)v/9 \\ &+ \sqrt{2}v'\zeta\zeta'[2/(3E_1E_4) + 1/(E_2E_3) + 1/(3E_3E_4) \\ &+ 1/(E_2E_4) + \sqrt{2}B_4/(E_1E_4E_5)] \\ &- \sqrt{2}v'B_4\zeta'^2[4/(E_3E_4E_5) + 9/(2E_2^2E_3)], \\ g_{\parallel} &= g_s + 8k'\zeta'/(3E_1) \\ &- 2\zeta'(2k'\zeta - k\zeta' + 2g_s\zeta')/(9E_1^2) \\ &+ 4\zeta'^2(k - 2g)/(9E_3^2) - 2\zeta^2(k + g_s)/(3E_2^2) \\ &+ 4k'\zeta'\zeta[1/(9E_1E_3) - 1/(3E_1E_2) + 1/(3E_2E_3)] \\ &- 8k'\zeta'v/(9E_1^2) + \sqrt{2}v'(k'\zeta + k\zeta')/(3E_1E_4), \\ g_{\perp} &= g_{\parallel} + 4k'\zeta'v/(3E_1^2) \\ &- 4\sqrt{2}v'(k'\zeta + 2k\zeta')/(3E_1E_4), \end{split}$$

with

$$\begin{split} \zeta &= (N_{t})^{2} \left\{ \zeta_{d}^{0} + \left[\sqrt{2} \lambda_{\pi} \lambda_{\sigma} - (\lambda_{\pi})^{2} / 2 \right] \zeta_{p}^{0} \right\}, \\ \zeta' &= N_{t} \cdot N_{e} \left\{ \zeta_{d}^{0} + \left[\lambda_{\pi} \lambda_{\sigma} / \sqrt{2} + (\lambda_{\pi})^{2} / 2 \right] \zeta_{p}^{0} \right\}, \\ k &= (N_{t})^{2} \left[1 - (\lambda_{\pi})^{2} / 2 + \sqrt{2} \lambda_{\pi} \lambda_{\sigma} + 2 \lambda_{\sigma} S_{dp}(\sigma) \right. \\ &\left. + 2 \lambda_{\pi} S_{dp}(\pi) \right], \\ k' &= N_{t} \cdot N_{e} \left[1 + (\lambda_{\pi})^{2} / 2 + \lambda_{\pi} \lambda_{\sigma} / \sqrt{2} \right. \\ &\left. + 4 \lambda_{\pi} S_{dp}(\pi) + \lambda_{\sigma} S_{dp}(\sigma) \right], \end{split} \tag{4}$$

where the zero-order energy denominators E_i (i=1-5) are defined in [8]. v and v' are the trigonal field parameters. g_s (≈ 2.0023) is the g factor of a free ion. $\zeta_{\rm d}^0$ and $\zeta_{\rm p}^0$ are the SO coupling parameters of a free 3d⁷ ion and that of a free ligand ion. $B_4 = N_{\rm t}^3 N_{\rm e} B_0$ (the Racah parameter of a free 3d⁷ ion).

The LCAO coefficients N_t , N_e and the effective cubic field parameter $\Delta_{\rm eff}$ (which is close to 10Dq) can be estimated from the optical spectra of the studied system. Since no spectral data of GaP:Fe⁺ are reported,

we estimated these parameters from the corresponding parameters of the isoelectronic 3d⁷ Co²⁺ ion in GaP crystals. Since for the isoelectronic $3d^n$ ions in the same crystal the covalence and the cubic field parameter Dq of 3dⁿ clusters increase with increasing valence state of the $3d^n$ ion [11], the covalence reduction factors N_t and N_e in GaP:Fe⁺ should be larger and the parameter Dq should be smaller than the corresponding values in GaP:Co²⁺ crystal. From the values of $N_{\rm t} \approx 0.85$, $N_{\rm e} \approx 0.83$ and $\Delta_{\rm eff} \approx 4120~{\rm cm}^{-1}$ in GaP:Co²⁺ [12], we take $N_{\rm t} \approx 0.895$, $N_{\rm e} \approx 0.889$ and $\Delta_{\rm eff} \approx 3700 \ {\rm cm^{-1}}$ for GaP:Fe⁺. Since for the Fe⁺_{Ga}-S_P defect center in GaP the number of P³⁻ ligands is three times that of S^{2-} ligands, and the difference between the SO coupling parameters $\zeta_p(P^{3-})\approx 250~cm^{-1}$ [5] and $\zeta_p(S^{2-})\approx 365~cm^{-1}$ [13] is not large, we neglect the small influence of a S²⁻ ion in the P³⁻ site in the calculation of the parameters in (4). Thus, from the Slater-type SCF functions and the metalligand distance $R \approx 2.36 \text{ Å}$ [14] in GaP we obtain the group overlap integrals $S_{\rm dp}(\pi) \approx 0.0137$ and $S_{\rm dp}(\sigma) \approx$ -0.0422. By applying these values to (2), we obtain $\lambda_{\pi} \approx -0.3114$ and $\lambda_{\sigma} \approx 0.4615$. Thus, the parameters in (4) can be calculated. They are $\zeta \approx 234.8$ cm⁻¹, $\zeta' \approx 272.7 \text{ cm}^{-1}, k \approx 0.5614 \text{ and } k' \approx 0.7243.$

The trigonal field parameters can be calculated from the superposition model [17], i. e.,

$$\begin{split} \nu &= \frac{6}{7} [\bar{A}_2(S) - \bar{A}_2(P)] \\ &+ \frac{160}{63} [\bar{A}_4(S) - \bar{A}_4(P)/27] - \frac{640}{243} \bar{A}_4(P), \\ \nu' &= -\frac{2\sqrt{2}}{7} [\bar{A}_2(S) - \bar{A}_2(P)] \\ &+ \frac{40\sqrt{2}}{63} [\bar{A}_4(S) - \bar{A}_4(P)/27] - \frac{160\sqrt{2}}{243} \bar{A}_4(P). \end{split} \tag{5}$$

in which $\bar{A}_2(X)$ and $\bar{A}_4(X)$ indicate the intrinsic parameters related to ligand X (X = P or S). For a tetrahedral $3d^n$ cluster, $\bar{A}_4(X) \approx (27/16)Dq(X)$. The ratio $\bar{A}_2(X)/\bar{A}_4(X) \approx 9 \sim 12$ is obtained for $3d^n$ ions in many crystals, and we take $\bar{A}_2(X)/\bar{A}_4(X) \approx 9$ here. For the free Fe⁺ ion, the Racah parameters are $B_0 \approx 869 \text{ cm}^{-1}$ and $C_0 \approx 3638 \text{ cm}^{-1}$ [6]. Thus, in the above formulas, only the value of $Dq(S^{2-})$ is not known. By fitting the calculated EPR parameters g_{\parallel} , g_{\perp} , and D of the Fe $_{\text{Ga}}^+$ -S $_{\text{P}}$ defect center in GaP to the experimental values, we have

$$Dq(S^{2-}) \approx 365 \text{ cm}^{-1}.$$
 (6)

Table 1. The EPR parameters (g factors g_{\parallel}, g_{\perp} , and zero-field splitting D) for the Fe⁺_{Ga}-S_P pair in GaP crystal.

	8	g	$D (\mathrm{cm}^{-1})$
Calculation	2.137	2.135	-0.1720
Experiment [3]	2.133(5)	2.140(5)	-0.1705(3)

The calculated EPR parameters are compared with the observed values in Table 1.

3. Discussion

The above studies suggest that for the Fe^+ - S^{2-} combination in an Fe_{Ga}⁺-S_P center, $Dq(S^{2-}) \approx 365 \text{ cm}^{-1}$,

- [1] A. Hoffmann, R. Heitz, and I. Broser, Phys. Rev. B41, 5806 (1990).
- [2] W. C. Holton, M. de Wit, T. L. Estle, B. Dischler, and J. Schneider, Phys. Rev. 169, 359 (1968).
- [3] J. Kreissl, W. Ulrici, U. Rehse, and W. Gehlhoff, Phys. Rev. B45, 4113 (1992).
- [4] K. A. Kikoin and V. N. Fleurov, Transition Metal Impurities in Semiconductors, World Scientific, Singapore
- [5] C.E. Moore, Atomic Energy Levels, National Bureau of Standard, Washington 1949.
- [6] J.S. Griffith, The Theory of Transition-metal Ions, Cambridge University Press, London 1964.
- [7] W. C. Zheng, S. Y. Wu, and P. Ren, Physica B269, 314 (1999).
- [8] W. C. Zheng, X. X. Wu, Y. Mei, and J. Zi, Z. Naturforsch. 59a, 783 (2004).

the value is close to that ($\approx 360 \text{ cm}^{-1}$ [16]) for Fe⁺ in a ZnS crystal and can be regarded as reasonable. Based on this, the EPR parameters g_{\parallel} , g_{\perp} , and D assigned to the Fe_{Ga}-S_P pair defect in an n-type GaP codoped with iron and sulphur can be satisfactorily explained (see Table 1). So, the assignment is suitable.

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No.10274054) and the Science Foundation of CAFUC.

- [9] R. M. Macharlane, J. Chem. Phys. 47, 2006 (1967).
- [10] R. M. Macharlane, Phys. Rev. B1, 989 (1970).
- [11] J. A. Lever, Inorganic Electronic Spectroscopy, Elsevier Press, Amsterdam 1984.
- [12] W. C. Zheng, S. Y. Wu, S. Tang, and J. Zi, J. Appl. Phys. 95, 1945 (2004).
- [13] S. Fraga, K. M. S. Saxena, and J. Karwowski, Handbook of Atomic Data, Elsevier Press, New York
- [14] G. H. Stauss, J. J. Krebs, and R. L. Henry, Phys. Rev. B16, 674 (1977).
- [15] D. J. Newman and B. Ng, Rep. Prog. Phys. 52, 699 (1989).
- [16] H. Zimmermann, R. Boyn, and N. Nagel, Phys. Status Solidi B117, 229 (1983).